The Hamilton-Pontryagin principle and multi-Dirac structures for classical field theories
نویسندگان
چکیده
منابع مشابه
The Hamilton-Pontryagin Principle and Multi-Dirac Structures for Classical Field Theories
We introduce a variational principle for field theories, referred to as the HamiltonPontryagin principle, and we show that the resulting field equations are the Euler-Lagrange equations in implicit form. Secondly, we introduce multi-Dirac structures as a graded analog of standard Dirac structures, and we show that the graph of a multisymplectic form determines a multi-Dirac structure. We then d...
متن کاملReduction of Dirac Structures and the Hamilton–pontryagin Principle
This paper develops a reduction theory for Dirac structures that includes in a unified way, reduction of both Lagrangian and Hamiltonian systems. It includes the reduction of variational principles and in particular, the Hamilton–Pontryagin variational principle. It also includes reduction theory for implicit Lagrangian systems that could be degenerate and have constraints. In this paper we foc...
متن کاملA Geometric Hamilton-jacobi Theory for Classical Field Theories
In this paper we extend the geometric formalism of the Hamilton-Jacobi theory for hamiltonian mechanics to the case of classical field theories in the framework of multisymplectic geometry and Ehresmann connections.
متن کاملMean-Field Pontryagin Maximum Principle
We derive a Maximum Principle for optimal control problems with constraints given by the coupling of a system of ODEs and a PDE of Vlasov-type. Such problems arise naturally as Γ-limits of optimal control problems subject to ODE constraints, modeling, for instance, external interventions on crowd dynamics. We obtain these first-order optimality conditions in the form of Hamiltonian flows in the...
متن کاملHamilton-Pontryagin variational integrators
In this paper we discuss the applications of the Hamilton-Pontryagin variational principle for designing time-adaptive variational integrators. First, we review the multisymplectic formalism of field theories. Next, we review the Hamilton-Pontryagin principle and show how it can be used to handle time reparametrizations in a very natural way. Finally, we derive a time-adaptive variational integ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2012
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4731481